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ABSTRACT

We investigate a stationary pair production cascade in the outer magnetosphere of
an isolated, spinning neutron star. The charge depletion due to global flows of charged
particles, causes a large electric field along the magnetic field lines. Migratory elec-
trons and/or positrons are accelerated by this field to radiate gamma-rays via curvature
and inverse-Compton processes. Some of such gamma-rays collide with the X-rays to
materialize as pairs in the gap. The replenished charges partially screen the electric
field, which is self-consistently solved together with the energy distribution of particles
and gamma-rays at each point along the field lines. By solving the set of Maxwell and
Boltzmann equations, we demonstrate that an external injection of charged particles at
nearly Goldreich-Julian rate does not quench the gap but shifts its position and that
the particle energy distribution cannot be described by a power-law. The injected par-
ticles are accelerated in the gap and escape from it with large Lorentz factors. We show
that such escaping particles migrating outside of the gap contribute significantly to the
gamma-ray luminosity for young pulsars and that the soft gamma-ray spectrum between
100 MeV and 3 GeV observed for the Vela pulsar can be explained by this component.
We also discuss that the luminosity of the gamma-rays emitted by the escaping particles
is naturally proportional to the square root of the spin-down luminosity.

Subject headings: gamma-rays: observations — gamma-rays: theory — magnetic fields —
methods: numerical — pulsars: individual (Geminga pulsar, PSR B1055-52, PSR B1706-
44, Vela pulsar)



1 INTRODUCTION

1. Introduction

Recent years have seen a renewal of interest in
the theory of particle acceleration in pulsar magne-
tospheres, after the launch of the Compton Gamma-
ray Observatory (CGRO). The Energetic Gamma
Ray Experiment Telescope (EGRET) on board the
CGRO has detected pulsed signals from at least
seven rotation-powered pulsars (for the Crab pul-
sar, Nolan et al. 1993, Fierro et al. 1998; for
the Vela pulsar, Kanbach et al. 1994, Fierro et al.
1998; for PSR B1706-44, Thompson et al. 1996;
for PSR B1951, Ramanamurthy et al. 1995; for
PSR B1046-58, Kaspi at al. 2000; for Geminga,
Mayer-Hasselwander et al. 1994, Fierro et al. 1998;
for PSR B1055-52, Thompson et al. 1999). Since in-
terpreting «y-rays should be less ambiguous compared
with reprocessed, non-thermal X-rays, the ~-ray pul-
sations observed from these objects are particularly
important as a direct signature of basic non-thermal
processes in pulsar magnetospheres, and potentially
should help to discriminate among different emission
models.

Attempts to model the pulsed 7-ray emissions have
concentrated on two scenarios (fig. 1): Polar cap mod-
els with emission altitudes of ~ 10*cm to several neu-
tron star radii over a pulsar polar cap surface (Hard-
ing, Tademaru, & Esposito 1978; Daugherty & Hard-
ing 1982, 1996; Dermer & Sturner 1994; Sturner, Der-
mer, & Michel 1995; also see Scharlemann, Arons,
& Fawley 1978 for the slot gap model), and outer
gap models with acceleration occurring in the open
field zone located near the light cylinder (Cheng, Ho,
& Ruderman 1986a,b, hereafter CHRa,b; Chiang &
Romani 1992, 1994; Romani and Yadigaroglu 1995;
Romani 1996). Both models predict that electrons
and positrons are accelerated in a charge depletion
region, a potential gap, by the electric field along the
magnetic field lines to radiate high-energy ~-rays via
the curvature process. However, there is an impor-
tant difference between these two models: An polar-
gap accelerator releases very little angular momenta,
while an outer-gap one could radiate them efficiently.
In addition, three-dimensional outer-gap models com-
monly explain double-peak light curves with strong
bridges observed for the «y-ray pulsars. The purpose
of the present paper is, therefore, to explore further
into the analysis of the outer-gap models.

If a magnetized neutron star is rotating with angu-
lar velocity €2, a static observer measures the rotation-

ally induced charge density (Goldreich & Julian 1969;
Mestel 1971)

pG‘]E—$V'[(QXT)XB], (1)

where Q satisfies || = Q and directs the rotation axis
(fig- 1), B is the magnetic field at potision r from the
stellar center, ¢ the speed of light. Expanding the
right-hand side with respect to [Q2 x r|/c, we obtain

QB 2
PGy = o [1+0(Q xr/e)’], (2)
where B¢ = B - Q/Q. For a Newtonian dipole mag-
netic field, the null surface, where B; and hence pgy
vanishes, is located on a constant colatitude in the
outer magnetosphere on the poloidal plane (heavy
dashed line in fig. 1).

If the real charge density, pe, deviates from pgy in
any region, an electric field is exerted along B. If
the potential drop is sufficient, migratory electrons
and/or positrons will be accelerated to radiate ~-
rays via curvature and/or inverse-Compton (IC) pro-
cesses. Some of such ~-rays collide with the soft pho-
tons illuminating the outer part of the magnetosphere
and materialize as pairs in the gap. The replenished
charges partially screen the original acceleration field,
E, = E - B,/B,, where B, is the magnetic field
projected on the poloidal plane, and B, = |Bp|. If
the created particles pile up at the boundaries of the
potential gap, they will quench the gap eventually.
Nevertheless, if the created particles continue to mi-
grate outside of the gap as a part of the global flows
of charged particles, a steady charge-deficient region
could be maintained. This is the basic idea of a par-
ticle acceleration zone in a pulsar magnetosphere.

In the CHR picture, the mainstream of the outer-
gap model, the gap is hypothesized to be geometri-
cally thin in the transfield direction on the poloidal
plane in the sense D; <« W, where D represents the
typical transfield thickness of the gap, while W does
the width along the magnetic field lines. In this limit,
the acceleration electric field is partially screened by
the zero-potential walls separated with a small dis-
tance D ; as a result, the gap, which is assumed to be
vacuum, extends from the null surface to (the vicinity
of) the light cylinder (fig. 1).

If B, > 0 holds in the starward side of the null
surface, a positive acceleration field arises in the gap.
The light cylinder is defined as the surface where the
azimuthal velocity of a plasma would coincide with ¢
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if it corotated with the magnetosphere. Its distance,
wre = ¢/, from the rotational axis is called the
‘light cylinder radius’. Particles are not allowed to
migrate inwards beyond this surface because of the
causality in special relativity.

It should be noted that the null surface (where
B¢ vanishes) is not a special place for the gap elec-
trodynamics in the sense that the plasmas are not
completely charge-separated in general and that the
particles freely pass through this surface inwards and
outwards. Therefore, the gap inner boundary is lo-
cated near to the null surface, not because a particle
injection is impossible across this surface (as previ-
ously discussed), but because the gap is vacuum and
transversely thin.

Then what happens in the CHR picture if the gap
becomes no longer vacuum? To consider this prob-
lem rigorously, we have to examine the Poisson equa-
tion for the electrostatic potential. In fact, as will
be explicitly demonstrated in the next section, the
original vacuum solution obtained in the pioneering
work by CHR cannot be applied to a non-vacuum
CHR picture. We are, therefore, motivated by the
need to solve self-consistently the Poisson equation
together with the Boltzmann equations for particles
and ~-rays. Although the ultimate goal is to solve
three-dimensional issues, a good place to start is
to examine one-dimensional problems. In this con-
text, Hirotani and Shibata (1999a, b, c; hereafter
Papers I, II, III) and Hirotani (2000b, Paper VI)
first solved the Boltzmann equations together with
the Maxwell equations one-dimensionally along the
field lines, extending the idea originally developed for
black-hole magnetospheres by Beskin et al. (1992).
Subsequently, Hirotani (2000a, Paper IV; 2001, Pa-
per V) considered a ‘gap closure condition’ (eq. [29])
to constrain the gap width and estimated the ~y-ray
fluxes for individual pulsars.

There is one important finding in this second pic-
ture: The gap position shifts if there is a particle in-
jection across either of the boundaries (Hirotani &
Shibata 2001, 2002a,b; hereafter Papers VII, VIII,
IX). For example, when the injection rate across the
outer (or inner) boundary becomes comparable to
the typical Goldreich-Julian value, the gap is located
close to the neutron star surface (or to the light cylin-
der). In other words, an outer gap is not quenched
even when the injection rate of a completely charge-
separated plasma across the boundaries approaches
the typical Goldreich-Julian value. Thus, an outer

gap can coexist with a polar-cap accelerator; this
forms a striking contrast to the first, CHR picture. It
is also found in the second picture that an outer gap is
quenched if the created particle density within the gap
exceeds some fractions of the Goldreich-Julian value.
That is, the discharge of created pairs is essential to
screen the acceleration field.

More recently, Hirotani, Harding, and Shibata
(2003, Paper X) demonstrated that the particle en-
ergy distribution cannot be represented either by a
power law or by the mono-energetic approximation,
by solving explicitly the energy dependence of parti-
cle distribution functions, together with E; and the
~-ray distribution functions. They further showed
that a soft power-law spectrum is generally formed
in 100 MeV-3 GeV energies as a result of the super-
position of the curvature spectra emitted by particles
migrating at different positions.

In the present article, we sum up the main points
that have been made in the second picture (from Pa-
pers I to X), which assumes that the gap is geomet-
rically thick in the transfield direction in the sense
D, >0.3W.

In the next section, we demonstrate that the charge
distribution in the non-vacuum CHR model does not
satisfy the Maxwell equation. We then analytically
constrain the gap position in § 3, and explicitly for-
mulate the basic equations in § 4 for quantitative anal-
ysis. We apply the theory to individual pulsars in § 5.
In the final section, we discuss the stability of the gap,
evolution of the «-ray luminosity vs. spin-down one,
and the unification of the CHR and the second pic-
tures in outer-gap models, as well as the unification
of the outer-gap and the polar-cap models.

2. Difficulties in Previous Outer-gap Models

To elucidate the electrodynamic difficulties in pre-
vious outer-gap models, we have to examine the Pois-
son equation for the electrostatic potential. In the
inertial frame, the Poisson equation becomes

V- —%(er) x B=VU| =4mpe(r), (3)
where the left-hand side is the divergence of the
electric field. The real charge density, pe, is given
by pe = p+ + p—, where p; and p_ represent the
positronic and electronic charge densities, respec-
tively. The non-corotational potential ¥ is related
to the usual scalar and vector potential (A4g,A) as
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¥ = Ay — (Qw/c)ey - A, where w designates the dis-
tance from the rotation axis, ey the azimuthal unit
vector. Noting that E; = —(Q2 x r) x B/c represents
the electric field perpendicular to the magnetic field,
we find that the term —V?2¥ is important for particle
acceleration in equation (3).

Since the azimuthal dimension is supposed to be
large compared with D in conventional outer-gap
models, equation (3) is reduced to the following two-
dimensional form on the poloidal plane

0¥ 9’
~ 3% " 37 =4n[pe(s, 2) — pci(s,z)], (4)

where equation (1) is used; s and z refer to the co-
ordinates parallel and perpendicular, respectively, to
the poloidal magnetic field. The star surface corre-
sponds to s = 0; s increases outwardly along the field
lines. The last-open field line corresponds to z = 0;
z increases towards the magnetic axis (in the same
hemisphere). A dipole magnetic field has a single-
signed curvature near the last open field line (i.e., at
z < wrc) except close to the light cylinder. Thus,
~-rays propagate into the higher altitudes (i.e., large
z regions); as a result, in the CHR picture, the parti-
cle number density (p+ — p—)/e grows exponentially
in the z direction, where e designates the magnitude
of the charge on an electron. Because of this expo-
nential growth of the particle number density, it has
been considered that most of the vy-rays are emitted
from the higher altitudes.

To explain the observed v-ray luminosities with a
small D , one should assume that the created current
density becomes the typical Goldreich-Julian value in
the higher altitudes. That is, the conserved current
density per magnetic flux tube should satisfy

cp+  —cp_ Q

BT B " 5)
in the order of magnitude, where B = |B|. How-
ever, such a copious pair production will screen the
local acceleration field, E) = —0¥/Js, as the Poisson
equation (4) indicates.

This screening effect is particularly important near
to the inner boundary. Without loss of any general-
ity, we can assume that E) is positive. In this case,
because of the discharge, only electrons exist at the
inner boundary. (We may notice here that external
particle injections are not considered in the CHR pic-
ture.) Thus, we obtain pe/B = p_ /B ~ —Q/(2wc) in
the order of magnitude. In the vicinity of the inner

boundary, we can Fourier-analyze equation (4) in z
direction to find out that the —8%¥/0z? term con-
tributes only to reduce 8E)/8s = —9*¥ /ds*. Thus,
a positive —pgy must cancel the negative p, to make
the right-hand side be positive. That is, at the inner
boundary,

_pcs _ @ Belpel 92
B 2B B 2re (6)

must be satisfied, so that the acceleration field may
not change sign in the gap. It follows that the polar
cap, where B¢ ~ B holds, is the only place for the
inner boundary of the ‘outer’ gap to be located, if the
created particle number density in the gap is compa-
rable to the typical Goldreich-Julian value (eq. [5]).
Such a non-vacuum gap must extend from the polar
cap (not from the null surface where pg; vanishes) to
the light cylinder. We can therefore conclude that the
original vacuum solution obtained by CHR cannot be
applied to a non-vacuum CHR picture when there is
a sufficient pair production that is needed to explain
the observed y-ray luminosity.

To construct a self-consistent model, we have to
solve equation (4) together with the Boltzmann equa-
tions for particles and v-rays. In what follows, we
consider this issue.

3. Analytic Examination of the Gap Position

Before turning to a closer examination of the par-
ticle Boltzmann equations (after § 4.2), it is helpful
to describe the gap position and width with the aid
of particles continuity equations. In this section, we
analytically investigate this issue.

3.1. Particle Continuity Equations

At time ¢, position x, and momentum p, the dis-
tribution function NV of particles obeys the following
Boltzmann equation,

ON

ON v
Y v VN+(eE+ 2 xB)- 2 =
at Y (e + ¢ ) op Sttz,p), (7)

where v =p/(meI'); me refers to the rest mass of an
electron, and I' = 1/4/1 — (|v|/c)? the Lorentz fac-
tor. In a pulsar magnetosphere, the collision term
S consists of the terms representing the particle ap-
pearing and disappearing rates at  and p per unit
time per unit phase-space volume due to pair pro-
duction, pair annihilation, IC scatterings, and the
synchro-curvature process. Integrating equation (7)
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over the momentum space, and assuming that N van-
ishes rapidly enough at p; — oo (i = 1,2,3), we
obtain

ON N\ &

SV (0F)=8¢=zp.  ®
where the particle number density N and the aver-
aged particle velocity (v) are defined by

Since the IC scatterings and the synchro-curvature
process conserve the particle number,

Sta) = [ ” S(t,2,p)dp (10)

consists of pair production and annihilation terms.
For a typical pulsar magnetosphere, the annihilation
is negligibly small compared with the production.
Therefore, we obtain

(11)
where G4 (t,z,E,) and G_(t,z,E,) designate the
distribution functions of outwardly and inwardly prop-
agating 7y-ray photons, respectively, having energy
E.,,. The pair-production redistribution functions are
defined by

(t,; B, 1) = /1d(1 )/OodE dNx
Mp\l, &5 Ly, 1) = C . w 1Y xdEdeUpa

Ein
(12)
where o, (E,, Ex, 1) represents the pair-production
cross section, and

Ep=—-—"7"""; (13)

cos™! py (or cos™! pu_) is the collision angle between

the X-rays and the outwardly (or inwardly) propagat-
ing -rays.

Since the drift motion due to the gradient and the
curvature of B is negligible for typical outer-gap pa-
rameters, we can decouple (v) as

B
v) = wyeq + ccos =2, 14
(v) p€o
p

1 o0
S(t.e) =7 [ dB, By )G+ 1y By iG],

where (), designates the angular velocity of parti-
cles due to E | x B, drift, and ® the projection an-
gle of the particle three-dimensional motion onto the
poloidal plane. The drift angular velocity (2, coin-
cides Q provided that By = 0 and |E|| < |EL| =
Byw/wic hold. Imposing a stationary condition

0 0

— 4+ 0, — =

ot Pog
assuming By < B, = |Byp|, and utilizing V - B =
0, we obtain the following continuity equations for
particles from equation (8)

d (Ny\ 1 o0

(16)
where B,0/0s = Bj, - V. Throughout this paper, we
assume E > 0, which does not lose any generality. In

0, (15)

this case, for positrons (or electrons), we have N =
N, = py/e and cos® = +|cos®| (or N = N_ =
—p_/e and cos® = —|cos®|). The pair-production
mean free path A, (s) is defined by

/ (116 (85 By, p )Gt + Mo (8, By, p )G dE,
[0]

1
Ap o
¢ [ (Gr(sB) + G (s, B ))aE,

’ (17)
Since the number of created positrons is always equal
to that of created electrons, the right-hand side of
equation (16) is common for Ny and N_. To examine
the gap position, we must combine equation (16) with
the vy-ray Boltzmann equations.

3.2. Elimination of Gamma-ray Distribution
Functions

In general, the ~-ray distribution function G4 at
momentum k obey the following Boltzmann equations

—aGi + ci
at k|

where S, represents the collision terms. Unlike the
charged particles, y-rays do not propagate along the
magnetic field line at each point, because they pre-
serve the directional information where they were
emitted. However in this paper, we assume for sim-
plicity that they propagate along the local magnetic
field lines and put

VGy(t,x, k) =S, (t,x, k), (18)

B
=cos®, =2

m 107 Bp + sin <I>ye¢. (19)
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This assumption is justified if the magnetic field lines
are nearly straight in the gap (i.e., if W < wic
holds). If aberration due to rotation is negligible,
we obtain ®, = 0 (or «) for outwardly (or inwardly)
propagating y-rays. For simplicity, we further assume
that the following stationary condition is satisfied

10

— 4+c¢sin®, ——|GL =0 20
| 2] e (20)
Then, noting that the curvature process is the dom-
inant process in S,, compared with the IC process,
the pair creation, and the pair annihilation for typi-
cal pulsar parameters, we find that G (s, E,) obey

coos®, B, 7 (52) = [ bl B TN,
p

(21)
where (e.g., Rybicki, Lightman 1979)

ns. D) = V2 Lp <&> (22)

"~ hp(s) E, E,.
3 hel®
B(s.D) = 21 23)
F(z) =2 / Ks (Hadt; (24)

pc(8) is the curvature radius of the magnetic field lines
and K3 is the modified Bessel function of 5/3 order.
The effect of the broad spectrum of curvature y-rays is
represented by the factor F(E,/E,) in equation (22).

Integrating equation (21) over E,, combining with
equations (16), and assuming Os(\, cos®) = 0, we
obtain

1 N, —N_ [*®
+ / nedE,,
0

d® (Ni\ 1
ds? (Bp> " |cos®cos®,| Ape B,
(25)
where 0 < ®, < 7/2 (or 7/2 < ®, < =) is applied to
outwardly (or inwardly) propagating ~-rays.

3.3. Real Charge Density in the Gap

One combination of the two independent equa-
tions (25) yields the current conservation law; that
is, the total current density per magnetic flux tube,

. 2mce Ni(s)+ N_(s)
Jtot = Q B,(s)

(26)

is conserved along the field lines. (Note that it can be
derived directly from eq. [16].) Another combination

gives

@2 (Np-N_\ 2 N, Ny-N_
ds? B - W Xp|cos®,| B,

» (27)

P

where
w *©
N =" _ o(5,T, E.)dE 2
v c|(:os<I>|/0 e (s 7)dE, (28)

refers to the expectation value of the number of -
rays emitted by a single particle that runs the gap
width, W. Lorentz factor appearing in 7. should be
evaluated at each position s.

Exactly speaking, A, depends on G+ and G _; thus,
the y-ray distribution functions are not eliminated in
equation (25). Nevertheless, for analytic (and quali-
tative) discussion of the gap position, we may ignore
such details and adopt equation (27).

A typical y-ray propagates the length W/ (2| cos ®,|)
within the gap that is transversely thick. Thus,
so that a stationary pair-production cascade may
be maintained, the optical depth, W/(2|cos ®,|Ap),
must equal the expectation value for a y-ray to mate-
rialize with the gap, N '. We thus obtain the follow-
ing condition: W/2 = |cos ®,|\,/N,. This relation
holds for a self-sustaining gap in which all the par-
ticles are supplied by the pair production. If there
is an external particle injection, the injected particles
also contribute for the ~y-ray emission. As a result, a
stationary gap can be maintain with a smaller width
compared to the case of no particle injection. Taking
account of such injected particles, we can constrain
the half gap width as

w_ Ap|cos @, | ‘j.gﬂ7 (29)
2 N, Jtot
where jgap and jiot refer to the created and total cur-
rent densities per unit magnetic flux tube. Equa-
tion (29) is automatically satisfied if we solve the
set of Maxwell and stationary Boltzmann equations.
Here, jgap is related with the particle injection rate
across the boundaries as follows:
Q Ny (s°)  Ny(s™)
Bp(s™)

omce B T By (sout)

where s'" and s°"t designate the position of the inner

and the outer boundaries, respectively. That is, W =
Sout _ Sin.
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With the aid of identity (29), we can rewrite equa-
tion (27) into the form
d_2 Ny —N_ _‘jgﬂiN"‘_N— (31)
dS2 Bp a jtot W2 Bp )

To solve this differential equation, we impose the fol-
lowing two boundary conditions:

N+(Sin) Q
- = _—4" 2
ce o = 50" (32)
N, out Q0
ceL = _—jout, (33)

Bp(sout) 2w
Then, equation (30), (32), and (33) give
N.-N_

B - _27rce(jgap _jin+j0m) (34)
1%

at s = s, and

N—i— _N— _ Q . -in -out
Bp - 27TC€ (Jgap +J J ) (35)

at s = s°%*. Under boundary conditions (34) and
(35), equation (31) is solved as

. jgap s — scnt)
- - sinh o
NN _ o | (= s
- a g
B, 2mce | /8P sinh( / ]gap)
jtot
e (57
+ "= Tt . (36)
cosh (1 /‘@)
Jtot

where the gap center position is defined by

Sin +Sout
Sent = ——5 (37)

Note that e(Ny — N_) = p, represents the real
charge density, which appears in the Poisson equation.
Thus, substituting equation (36) into (4), we obtain

2B, s—s
o 2lIl — P .a A cnt
A% ¢ [Jg pfdd( W/2

+(™ = %) feven (s ;Vj;“t) + %] ,(38)

where

sinh (m \/M)
sinh (/Feap/Jrot)

cosh (2+/Tgap [
cosh (v/fgap ot )

At the inner boundary, s = s'*, (s —scns) /(W/2) =
—1 holds; therefore, we obtain

foaa(z)

; (39)

(40)

feven (-'E =

oy - 2B
Cc

(_jgap +jin - jout + &) . (41)
BP
In the CHR picture, it is assumed that there is no
particle injection across either of the boundaries (i.e.,
jin = j°u = () and that the current density associ-
ated with the created particles becomes of the order
of the typical Goldreich-Julian value (i.e., jgap ~ 1).
It follows that the inner boundary of an ‘outer gap’
should be located close to the star, where B¢ ~ B,
holds; this conclusion is consistent with what was ob-

tained in § 2.

3.4. Gap Position vs. Particle Injection

To examine the Poisson equation (38) analytically,
we assume that the transfield thickness of the gap
is greater than W and replace V2¥ with d?¥/ds?.
Furthermore, we neglect the current created in the
gap and put jgap ~ 0.

First, consider the case when particles are injected
across neither of the boundaries(i.e., ji* = jout = ().
It follows that the derivative of the Ej vanishes at
the null surface, where B, vanishes. We may notice
that —d*¥ /ds®> = dE)/ds is positive at the inner part
of the gap and becomes negative at the outer part.
The acceleration field is screened out at the bound-
aries by virtue of the spatial distribution of the lo-
cal Goldreich-Julian charge density, pgy. Therefore,
we can conclude that the gap is located (or centers)
around the null surface, if there is no particle injection
from outside. This conclusion can be easily general-
ized to the case ji* = joUt £ (.

Secondly, consider the case when particles are in-
jected across the inner boundary at s = s'® (or in gen-
eral, when j® — j°U* > ( holds). Since the function
feven IS positive at arbitrary s, the gap center is lo-
cated at a place where B¢ is negative, that is, outside
of the null surface. In particular, when ji* — jout ~ 1
holds, dE) /ds vanishes at the place where B; ~ —B



4 THE SET OF MAXWELL AND BOLTZMANN EQUATIONS 8

holds. In a vacuum, static dipole field, B ~ —B is
realized along the last-open field line near to the light
cylinder. Therefore, the gap should be located close
to the light cylinder, if the injected particle flux across
the inner boundary approaches the typical Goldreich-
Julian value. We may notice here that feyen is less
than unity, because |s — s¢ng| does not exceed W/2.

Thirdly and finally, consider the case when ji» —
j°U* ~ —1 holds. In this case, dE) /ds vanishes at the
place where B; ~ B. Therefore, an ‘outer’ gap should
be located in the polar cap, if a Goldreich-Julian par-
ticle flux is injected across the outer boundary.

4. The Set of Maxwell and Boltzmann Equa-
tions

To examine the gap electrodynamics more quan-
titatively, we have to solve numerically the Poisson
equation for the electrostatic potential together with
the Boltzmann equations for particles and v-rays. To
this aim, we reduce these equations to a tractable
forms in this section.

4.1. One-dimensional Poisson Equation

For simplicity, we assume that a gap is transversely
thick in the sense D; > W (or at least Dy ~ W). In
this case, the derivative with respect to z in the left-
hand side of the Poisson equation (4) can be approx-
imated with —®/D?. Thus, we obtain the follow-
ing one-dimensional expression of the Poisson equa-
tion (4):

o N
Js? D?

+ 4 [pe(s) + QLC(S)] , (42)

2me

where
pel(s) = e / TAC Ny (5, T) - N (s,T)].  (43)

The particle distribution functions N, and N_ obey
the Boltzmann equations that will be described just
below.

4.2. Particle Boltzmann Equations

In this section, we consider the Boltzmann equa-
tions (7), which is necessary to investigate energy dis-
tribution of particles. It should be noted that quan-
tum effects can be neglected in the outer magneto-
sphere, because the magnetic field is much less than

the critical value (4.41 x 10! G). As a result, synchro-
curvature radiation takes place continuously and can
be regarded as an external force acting on a parti-
cle. If we instead put the collision term associated
with the synchro-curvature process in the right-hand
side, the energy transfer in each collision would be
too small to be resolved by the energy grids.

In the same manner as we derived the stationary
continuity equations (16), we impose the stationary
condition (15). Then, neglecting the pitch-angle de-
pendence of the particle distribution functions, and
approximating the collision term associated with the
curvature process as an external force acting on a par-
ticle, we obtain (Appendix A in Paper X)

i (%:) + [eEn - LV(S’F)] O — 54(s.D),

Pds c or
44)

0 N_ Pcv(S,F) ON_

— (= )—|eE) — ———=| ——=-5_(s,T
P s (Bp> [e I c or S-(s,1),
(45)
where the radiation-reaction force is given by

Poy(s,T) _ 2e’T* (46)

¢ 3ps)
Pe is the curvature radius of the magnetic field line.

4.2.1.  Collision terms

We assume in this paper that y-rays are either out-
wardly or inwardly propagating along the local mag-
netic field lines. We also assume that the soft photons
are emitted from the neutron star and hence unidi-
rectional at the gap. Then the cosine of the collision
angle p has a unique value p4 or u_, for outwardly
or inwardly propagating y-rays, respectively; py and
p— are determined by the magnetic inclination a; at
each position s (eq. [23] in Paper VII). Under these
assumptions, the source term can be expressed as

SpD) == [ dB (BT )N (s, T)
<

b [T )N (1) + Quls.T),
r;>I"

(47)
S_(s,T) = — /E B (B T )N (s.T)
4 <

+ / dT; 1f6(Ts, T, )N— (5, T5) + Qp (5, 1),
r;>r

(48)
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where the pair-production rate per unit volume per
unit Lorentz factor is defined as

(B, T, (B, T, e
sz/dEy[ 1o = ) g Ol o] )

G_

(49)
The positrons (or electrons) are supposed to collide
with the soft photons at the same angle as the out-
wardly (or inwardly) propagating ~-rays; therefore,
the same collision angle cos™* py (or cos™! p_) is used
for both IC scatterings and pair production in equa-
tions (47)—(49). The collisions tend to be head-on
(or tail-on) for inwardly (or outwardly) propagating
~-rays, as the gap approaches the star. The pair-
production redistribution function is given by

dF; do,
dEs dT'’

onp *
BBy L) = (1-ps) [ dE, (50)
En

where the pair-production threshold energy is de-
fined by equation (13). The differential cross section
dop/dl' is given in numerous textbooks in quantum
electrodynamics (e.g., Akhiezer & Berestetskii 1965;
or eq. [32] in Paper X)

The IC redistribution function 7/ (E,,T,x) rep-
resents the probability that a particle with Lorentz
factor I' upscatters photons into energies between E,
and E, + dE., per unit time when the collision angle
is cos™! p. On the other hand, - (T';, T, u) describes
the probability that a particle changes Lorentz factor
from T'; to T in a scattering. Thus, energy conserva-
tion gives

oo, Ty, 1) = mlglmec®(Ts = Ty),Ti;pu] - (51)

In general, i/, is defined by the soft photon flux
dFy/des and the Klein-Nishina cross section oxn as
follows:

(1—Bux)

dos, dE,*
0)* _ VKN
/ d TdE, *dQ* dE,

7hc E"/: r H:t)

/ a, 2%
(52)

where 3 = /1 — 1/I'? is virtually unity, Q. the solid
angle of upscattered photon, the asterisk denotes the
quantities in the electron (or positron) rest frame. In
the rest frame of a particle, a scattering always takes
place well above the resonance energy. Thus, the clas-
sical formula of the Klein-Nishina cross section can be
applied to the present problem. The soft photon flux

per unit photon energy E; [ lem~2ergs—1] is written
as dFy /dE,. To obtain n/y’s for individual pulsars, we
substitute the observed X-ray spectrum dF;/dEs and
execute integration over Fy and (2. For further de-
tails of 7], see Appendix B in Paper X.

4.3. Gamma-ray Boltzmann Equations

Let us briefly comment on the y-ray Boltzmann
equations. We recover v-ray production due to IC
scatterings and absorption due to pair production in
the right-hand side of equation (21) to obtain

+c| cos tI>,Y|Bp% ( )

/ " AL (B, T i) + 7e( By T)] Ni(s,T).
(53)

/dranp G(s, E,)

We integrate both sides of equation (53) over E, in
appropriate energy bins to reduce them into ordinary
differential equations.

In short, the set of Maxwell and Botzmann equa-
tions comnsist of equations (42), (44), (45), and (53).
The Poisson equation and the y-ray Boltzmann equa-
tions become ordinary differential equations, which
can be straightforwardly solved by a simple discretiza-
tion. On the other hand, the hyperbolic-type partial
differential equations (44) and (45) are solved by the
Cubic Interpolated Propagation (CIP) scheme (e.g.,
Yabe & Aoki 1991, Yabe, Xiao, & Utsumi 2001).

4.4. Boundary Conditions

In this section, we consider the boundary condi-
tions to solve the set of Maxwell and Boltzmann equa-
tions. Diving the 7-ray energies into m bins, and
diving the Lorentz factors into n bins, we impose the
following boundary conditions at the inner (starward)
boundary (s = s'*)

E)(s™) =0, 9(s") =0, (54)
bit1 .
/ Gi(s",E))dE, =0 for i=1,2,...m
b
(55)
and
in QB
N0 = 2 ) o =12,



5 APPLICATION TO INDIVIDUAL PULSARS

where y is an appropriate function satisfying [ loo y(T)dr

4. Moreover, current conservation law (26) gives

/ N_(s",T)dl = 0B, (s )(Jtot -, (57)

2mce

At the outer boundary (s = s°%t), we impose

By (s*) =0, (58)

b,+1
/b G_(s*",E,)dE, =0 for i=1,2,...m

i

(59)

QB out .
N_(s°",T;) = #y(l’j) for j=1,2,...n
(60)

The current density created in the gap per unit flux
tube can be expressed as

jgap = jtot - jin - jOUt' (61)

We adopt jgap, ji* and j°U! as the free parameters.
We chose y(I') so that the initial spectrum of the in-
jected particles may peak near the lowest energy bin
(e.g., solid curve in fig. 4); then, the results little de-
pend on the detailed form of y(T).

We have totally 2m + 2n + 4 boundary condi-
tions (54)—(60) for 2m + 2n + 2 unknown functions

fblzi“ G+(s,E,)dE,, N+(s,T;), ¥(s), and Ej(s). There-

fore, two extra boundary conditions must be com-
pensated by making the positions of the boundaries
s and s°"* be free. The two free boundaries ap-
pear because E| = 0 is imposed at both the bound-
aries and because jgap is externally imposed. In other
words, the gap boundaries (s'™ and s°'%) shift, if j»
and/or j°"* varies. That is, the gap position, as well
as its width W, cannot be artificially hypothesized
as in previous outer-gap models. They should be self-
consistently solved from the set of Maxwell and Boltz-
mann equations.

5. Application to Individual Pulsars

To solve the set of the Maxwell and Boltzmann
equations, we must specify the X-ray field, dFs/des,
which is necessary to compute the pair-production re-
distribution function (eq. [50]). In this paper, we use
the X-ray fluxes and spectra observed for individual
rotation-powered pulsars. In § 5.1, we summarize the
observed properties of the X-ray field. Then we apply
the theory to the Vela pulsar in § 5.2, to PSR B1706-
44 in § 5.3, to the Geminga pulsar in § 5.4, and to

10

PSR B1055-52 in § 5.5. We assume that the solid
angle of the emitted y-rays is 1 ster throughout this
paper.

5.1. Input Soft Photon field

We consider the photons emitted from the neu-
tron star surface as the seed photons for (y-v) pair-
production and IC scatterings. That is, we do not
consider power-law X-ray components, because they
are probably magnetospheric and beamed away from
the accelerator. We evaluate the IR photon field,
which is needed to compute the IC scattering rate,
from the Rayleigh-Jeans tail of the surface thermal
component. In table 1, we present the observed prop-
erties of the four y-ray pulsars exhibiting surface X-
ray components, in order of spin-down luminosity,
Lspin-

Vela (J0835-4513) From Chandra observations in
0.25-8.0 keV, the spectrum of this pulsar is turned out
to consist of two distinct component: A soft, thermal
component and a hard, power-law component. As
stated just above, we consider only the former com-
ponent as the X-ray field illuminating the outer gap.
This component can be modeled as a magnetic hy-
drogen atmosphere spectrum with effective temper-
ature kT = 0.68MK (Pavlov et al. 2001). Based on
high-resolution Ca II and Na I absorption-line spectra
toward 68 OB stars in the direction of the Vela su-
pernova remnant, Cha, Sembach, and Danks (1999)
determined the distance to be 250 &+ 30 pc.
B1706-44 (J1710-4432) Gotthelf, Halpern, Dodson
(2002) reported a broad, single-peaked pulsed profile
with pulsed fraction of 23%, using the High Resolu-
tion Camera on-board the Chandra X-ray observa-
tory. They fitted the spectroscopic data to find (at
least) two components: A blackbody of kT = 143 eV
with A = 0.129A4, and a power-law component with
photon index of —2.0, where A, = 47(10 km)2. We
consider that the former component illuminates the
gap efficiently and neglect the latter one. We adopt
d = 2.5 kpc as a compromise between the smaller
dispersion-measure distance of 1.8 kpc based on the
free electron model by Taylor and Cordes (1993) and
the larger H I kinematic distance of 2.4-3.2 kpc de-
rived by Koribalski et al. (1995).

Geminga (J0633+1746) The X-ray spectrum con-
sists of two components: the soft surface blackbody
with kT, = 50 eV and A5 = 0.214,(d/0.16)? and
a hard power law with @ = —1.6 (Halpern & Wang
1997). A parallax distance of 160pc was estimated
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Table 1: Input thermal X-ray field
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pulsar lg Lepin  distance Q lgBs kTy As/A kT An/AJ  model refs.
ergs s ! kpc rad s—! G eV eV

Vela 36.84 0.25 70.4 1253 59  1.000 hydrogen atm. 1

B1706-44 36.53 2.50 61.3 12.49 143 0.129 blackbody 2

Geminga 34.51 0.16 26.5 12.21 50 0.208 .. - blackbody 3,4

B1055-52  34.48 1.53 319 1203 78 1.340 740 1053 blackbody 5

t A, = 4m(10 km)2;  1: Pavlov et al. 2001; 2: Gotthelf, Halpern, Dodson 2002; 3: Halpern &

Wang 1997;  4: Becker & Triimper 1996;

rotation axis , pulsed y-rays

| .~
QQ v null surface

polar-cap | magnetic
accelerator field lines
|
NS —> outer-gap pulsed
accel erator yrays
/ (CHR picture)

|ast-open

field line §|ightcylinder

>
>

"~ light cylinder radius

Fig. 1.— Schematic picture (side view) of the two rep-
resentative models for accelerators (hatched regions)
in a pulsar magnetosphere. The small filled circle in-
dicated by ‘NS’ represents the neutron star, which is
rotating around the rotation axis (light dashed line).
The light cylinder (dotted line) is located typically
a few hundred neutron-star radii from the rotation
axis. On the null surface (heavy dashed line), the
magnetic field component projected along the rota-
tion axis, vanishes. The closed field lines, which do
not penetrate the light cylinder, are in the shaded re-
gion. It is hypothesized in the CHR picture that the
outer-gap accelerator extends between the null sur-
face and the light cylinder.

5: Mineo et al. 2002.

from HST observations (Caraveo et al. 1996).

B1055-52 (J1059-5237) Analyzing BeppoSAX data,
Mineo et al. (2002) reported that the X-ray spec-
trum consists of two components: a soft blackbody
with kT, = 78 eV and Ay = 1.34.(d/1.53)? and a
hard blackbody with kT, = 740 eV and A = 4.8 x

107%(d/1.53)%. They pointed out that a blackbody+power-

law model also fits the data. However, the results
differ little between the two models, by virtue of the
negative feedback effect of the gap electrodynamics
(§ 6.1). Thus, we adopt the former, two-blackbody
model. The distance is estimated to be 1.53 kpc from
dispersion measure (Taylor & Cordes 1993).

5.2.
5.2.1.

The Vela pulsar
Acceleration Field and Characteristics

We apply the theory to the Vela pulsar. Let us first
consider the spatial distribution of Ej. For this pul-
sar, a small created current density jgap = 4.6 X 1075
gives the best-fit spectrum (see § 5.2.3 for details).

To compare the effects of particle injection, we
present the Ej distribution for the three cases of
J™ =0 (solid), 0.25 (dashed), and 0.50 (dash-dotted)
in figure 2. The magnetic inclination is chosen to be
o; = 75°. We adopt j°*t = 0 throughout this paper,
unless its value is explicitly specified.

As the solid line shows, the gap is located around
the null surface when there is no particle injection
across either of the boundaries. Moreover, E varies
quadratically, because the Goldreich-Julian charge
density deviates from zero linearly near to the null
surface.

As the dashed and dash-dotted lines indicate, the
gap shifts outwards as ji* increases. When j* = 0.5
for instance, the gap is located on the half way be-
tween the null surface and the light cylinder. This
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result is consistent with the analytic prediction given
in § 3.4. The gap width increases as it shifts out-
wards, because A, in equation (29) increases due to
decreased X-ray density at large distances from the
star.

In figure 3, we present the characteristics of partial
differential equation (44) for positrons by solid lines,
together with FEj(s) when j® = 0.25 and oy = 75°
(i-e., the dashed line in fig. 2). We also superpose the
equilibrium Lorentz factor that would be obtained if
we assumed the balance between the curvature radi-
ation reaction and the electrostatic acceleration, as
the dotted line. It follows that the particles are not
saturated at the equilibrium Lorentz factor in most
portions of the gap.

In the outer part of the gap where Ej is decreas-
ing, characteristics begin to concentrate; as a result,
the energy distribution of outwardly propagating par-
ticles forms a ‘shock’ in the Lorentz factor direction.
However, the particle Lorentz factors do not match
the equilibrium value (dotted line). For example, near
the outer boundary, the particles have larger Lorentz
factors compared with the equilibrium value, because
the curvature cooling scale is longer than the gap
width. Thus, we must discard the mono-energetic ap-
proximation that all the particles migrate at the equi-
librium Lorentz factor as adopted in Papers I through
IX. We instead have to solve the energy dependence
of the particle distribution functions explicitly.

The particles emit «-rays not only inside of the
gap but also outside of it, being decelerated by the
curvature radiation-reaction force. The length scale
of the deceleration is given by

I'mec?

¢ 2 2\ 2
2 (<
3c? Pe
T -3 p 2
A4 Q1 — ¢ 2
0.4,y (107) (ch/Q) (62)

Since the typical Lorentz factor is a few times of 107,
leurv 1s typically much less than wwpc. Therefore, the
escaping particles lose most of their energies well in-
side of the light cylinder.

lCUI‘V

5.2.2.  Particle Energy Distribution

As we have seen in the foregoing subsection, the
distribution function of the particles forms a ‘shock’
in the Lorentz factor direction. In figure 4, we present
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Fig. 2.— Spatial distribution of Ej(s) for j* = 0
(solid), 0.25 (dashed), and 0.5 (dash-dotted), for the
Vela pulsar when a; = 75° and jgap = 4.6 x 1075
and j°U* = 0. The abscissa designates s/wLc, the
distance along the last-open field line normalized by
the light cylinder radius.

J0835—-4513
° inclination= 75deg
O [ T T~ —~<_ | T ]
Sw | d . -
O o | // \\ ]
oS — 1 / N 4
7 \
o I , \ 4
L, . i

~ oL / \ i
I O / \

~ — /! \\ —
/X /
E 0 [ ) o N
N F —
> -y
— )/
— n
o o

0.2 0.22 0.24

distance along field line / pi_LC

Fig. 3.— Spatial distribution of Ej(s) (dashed) for
the Vela pulsar when o; = 75°, ji* = 0.25, j°U =
0, and jgap = 4.6 x 107°. The characteristics for
positrons are also shown by solid lines. The equilib-
rium Lorentz factor, which would be obtained if the
curvature radiation-reaction force balanced the elec-
trostatic acceleration, is indicated by the dotted line.
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the energy distribution of positrons at several rep-
resentative points along the field line. At the in-
ner boundary (s = 0.184wr,c), particles are injected
with Lorentz factors typically less than 4 x 10% as
indicated by the solid line. Particles migrate along
the characteristics in the phase space and gradually
form a ‘shock’ as the dashed line (at s = 0.205wLc)
indicates, and attains maximum Lorentz factor at
s = 0.228wr,¢ as the dash-dotted line indicates. Then
they begin to be decelerated gradually and escape
from the gap with large Lorentz factors ~ 2.8 x 107
(dotted line) at the outer boundary, s = s°% =
0.241wr,c.

Even though the ‘shock’ is captured by only a few
grid points for the dash-dotted line in figure 4, the
CIP scheme accurately conserves the total current
density,

) 2wce [
Jtot = QB () /1 [Ni(s,T) + N_(s,I")]dT
— jin +j0ut +jgap ~ jin_ (63)

For this case, jiot is accurately conserved at 0.25 level
within 0.2% errors even at the ‘shock’.

5.2.3. Formation of Power-law Gamma-ray Spec-
trum

So far, we have seen that the outwardly propa-
gating particles are not saturated at the equilibrium
value and that such particles escape from the gap with
sufficient Lorentz factors suffering subsequent cooling
via curvature process. It seems, therefore, reasonable
to suppose that a significant fraction of the y-ray lu-
minosity is emitted from such escaping particles.

We present in figure 5 the vy-ray spectrum emitted
from outwardly propagating particles (i.e., positrons)
for the same case as in figure 3. The dashed line
represents the y-ray flux emitted within the gap, while
the solid one includes that emitted outside of the gap
by the escaping particles. Therefore, the difference
between the solid and the dashed lines indicates the -
ray flux emitted by the particles migrating outside of
the gap. For comparison, we plot the phase-averaged
EGRET spectrum, which is approximated by a power
law with a photon index —1.7 (Kanbach et al. 1994)
by open circles.

It follows from the figure that the ~-ray spec-
trum in 100 MeV-3 GeV energies can be explained
by the curvature radiation emitted by the escaping
particles. We adjusted the transfield thickness as
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Fig. 4.— Particle energy distribution at several points
along the magnetic field lines for the same case as
in figure 3. Initial spectrum (solid line) evolves to
dashed, dash-dotted, and dotted lines, as positrons
propagate outwards.
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Fig. 5.— Computed v-ray spectrum for the Vela pul-
sar for the same case as in figure 3. The dashed line
depicts the flux emitted within the gap, while the solid
one includes that emitted outside it.
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D, = 0.16wrc = 2.8W so that the observed flux
may be explained. The luminosity of the y-rays emit-
ted outside of the gap contribute 48% of the total lu-
minosity 5.08 x 10%33ergs s~ between 100 MeV and
20 GeV. In another word, we do not have to as-
sume a power-law energy distribution for particles
(as assumed in some of the previous outer-gap mod-
els) to explain the power-law y-ray spectrum for the
Vela pulsar. This conclusion is natural, because a
power-law energy distribution of particles will not be
achieved by an electrostatic acceleration, and because
magnetohydrodynamic shocks (i.e., real shocks) will
not be formed in the accelerator.

Because the X-ray field is dense for this young pul-
sar, the pair-production mean free path, and hence
the gap width becomes small (for details, see Hirotani
& Okamoto 1998; Papers IV & V). As a result, the
potential drop in the gap 2.24 x 10'3 V is only 0.81 %
of the electro-motive force (EMF) exerted on the spin-
ning neutron star surface ~ p/wis = 2.79 x 10'5 V.
Nevertheless, this potential drop is enough to accel-
erate particles into high Lorentz factors, 107-5.

5.2.4. Solutions in a Wide Parameter Space

With the hydrogen atmosphere model, we can ex-
plain the observed ~-ray spectrum in a wide parame-
ter space 45° < o; < 75° and 0.125 < ji* < 0.25, by
appropriately choosing jgap and D, . With increas-
ing jgap (K 1), the vF, [Jy Hz] peak energy increases
because of the increased W, while the sub-GeV spec-
trum becomes hard because of the significant y-ray
emission within the extended gap (rather than out-
side of it). On the other hand, D, affects only the
normalization of the y-ray flux; the y-ray luminosity
is proportional to D3 .

Let us first fix ji* at 0.25 and consider how the
best-fit values of jzap and D, depend on o;. As we
have seen, they are jgp = 4.6 x 107 and D, =
0.155wLc = 0.84s™ for a; = 75°. However, the ratio
D,/ s increases with decreasing o; and becomes 1.06
for 45°. From geometrical consideration, we conjec-
ture that D, should not greatly exceed s™™; we thus
consider that «; > 45° is appropriate for ji* = 0.25.
A large q; is preferable to obtain a small D /wic.
However, since the radio pulsation shows a single
peak, we consider that a; is not close to 90°. On
these grounds, we adopted a; = 75° as a compromise
for the Vela pulsar.

Let us next fix o; at 75° and consider how the best-
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fit values of jgap and D) depend on j". The ratio
D, /wyLc increases with decreasing 4™ and becomes
0.94 for ji* = 0.125 (c.f. 0.84 for ji* = 0.25). This is
because the decreased flux of the outwardly migrating
particles (due to decreased j) must be compensated
by a large D, to produce the same ~-ray flux. Thus,
we consider j™ > 0.125 is appropriate for o5 = 75°.
A large j™® is preferable to obtain a small D /L.
However, for ji* > 0.25, the gap is so extended that a
significant ~y-rays are emitted above GeV within the
gap; as a result, the sub-GeV spectrum becomes too
hard. On these grounds, we adopted j* = 0.25 as a
compromize.

For 45° < o5 < 75°,0.125 < j'™ < 0.25, and appro-
priately chosen jgap, and D, TeV flux is always less
than 3 x 10'° JyHz. Thus, one general point becomes
clear: TeV flux is unobservable with current ground-
based telescopes, provided that the emission solid an-
gle is 1 ster and that the surface thermal (not magne-
tospheric) X-rays are upscattered inside and outside
of the gap. Since the magnetospheric X-rays will be
beamed away from the gap and their specific inten-
sity is highly uncertain, we leave the problem of the
upscatterings of magnetospheric (power-law) X-rays
untouched.

5.3. PSR B1706-44

We next apply the theory to a Vela-type pulsar,
PSR B1706-44. To consider D, / s as small as pos-
sible, we adopt a large magnetic inclination 75°. We
compare vF, spectra for the three cases: ji* = 0.4,
0.2, and 0.1.

To examine how the sub-GeV spectrum depends
on j'", we fix the vF, peak at the observed value,
~ 2 GeV, by adjusting jsap appropriately. For the
solid (j* = 0.4), dashed (j"* = 0.2), and dash-
dotted (i = 0.1) lines in figure 6, we adopt jgap =
2.2 x 1074, 1.8 x 1074, and 1.5 x 10~%, respectively,
and d = 2.5 kpc. Moreover, the perpendicular thick-
ness is adjusted so that the predicted flux may match
the observed value (3.2 x 10'3 JyHz) at 1.4 GeV;
for the solid, dashed, and dash-dotted lines, they
are D, = 1.05wrc = 3.5s", 0.6lwLc = 4.1s™,
0.49wrc = 5.35'", respectively. The sub-GeV spec-
trum becomes hard with increasing ji*, because the
ratio of the flux emitted outside of the gap and that
emitted within it decreases as the gap extends with
increasing 5. However, as the solid line indicates,
the obtained sub-GeV spectrum is still too soft to
match the observation. For a smaller ji* (< 0.1), the
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sub-GeV spectrum becomes further soft. For a larger
ji"(> 0.4), D, exceeds wrc. For a non-zero j°Ut, the
inwardly shifted gap is shrunk to emit smaller y-ray
flux, which results in a further greater D /s™®. On
these grounds, the predicted sub-GeV spectrum be-
comes too soft or the «-ray flux becomes too small
(i-e., D1 becomes too large) for any parameter set of
4™ and joUt, if o5 = 75° and d = 2.5 kpc.

For a small inclination (a; < 75°), the gap is lo-
cated relatively outside of the magnetosphere, be-
cause the null surface crosses the last-open field line
at large distances from the star. Since A, increases in
equation (29) at large distances from the star, the gap
is extended for a small magnetic inclination. In such
an extended gap, particles saturate at the equilibrium
Lorentz factor in the outer part (Takata et al. 2002)
and emit most of the v-rays around the central energy
of curvature radiation. As a result, a hard sub-GeV
spectrum can be expected; however, we have to as-
sume a large D, that exceeds wrc if d = 2.5 kpc.

Nevertheless, if d is much less than 2.5 kpc and
a; < 75°, we can explain the observed spectrum with
moderate D, . For example, for d =1 kpc, o; = 45°,
j = 0.4, and jgap = 3.8 x 1073, the gap exists in
0.51wrc < s < 0.74wrc and the resultant spectrum
(dotted line in figure 6) matches the observation rel-
atively well with a marginally acceptable thickness,
D, =0.80wrc = 1.5s™.

On the other hand, for a large inclination (o; >
75°), the sub-GeV spectrum becomes softer than a; =
75° case for the same j'*, j°Ut and Jgap- Therefore,
the spectrum will not match the observation whatever
distance we may assume.

We can alternatively consider a CHR-like outer
gap. Assuming a small D, (say, 0.05wrc), we find
that the gap extends along the field lines due to
the screening effect of the zero-potential walls (i.e.,
the first term in the right-hand side of eq. [42]).
In most portions of this extended gap, particles are
nearly saturated at the equilibrium Lorentz factor.
As a result, the sub-GeV spectrum becomes hard
and match the observation with appropriate peak en-
ergy around 2 GeV. However, in this case, the ~-ray
flux becomes too small to match the observed value,
unless we adopt an unrealistic distance (300 pc for
DJ_ = 0.05’(2}_,(;).

In short, the phase-averaged EGRET spectrum for
this pulsar cannot be explained either by our current
model or by the CHR picture (D, <« W) for any
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combinations of ai, j, j°%, jgap, and D, if d =
2.5 kpc. Therefore, we suggest a small distance (e.g.,

1 kpc) for this pulsar with a large D) (~ wic)-

5.4. The Geminga Pulsar

Let us apply the theory to a cooling neutron star,
the Geminga pulsar. For a small o; (e.g., 45°), the
gap is so extended that the outer boundary exceeds
the light cylinder. For a larger «;, on the other hand,
not only the outer-gap emission, but also a polar-cap
one could be in our line of sight. Since there has been
no radio pulsation confirmed, we consider a moderate
magnetic inclination o; = 60°.

Since the soft photon field is less dense compared
with young pulsars like Vela or B1706—44, the gap is
extended along the field lines. For the set of param-
eters ji" = 0.25, j°" = 0, and jgp = 8.0 x 1075,
which gives the best-fit y-ray spectrum, we obtain
W = 0.59wrc. We present the spatial distribu-
tion of E) obtained for this set of parameters as
the dashed line in figure 7, as well as the charac-
teristics (solid lines). In the outer part of this ex-
tended gap, pgy, which gradually increases, is par-
tially canceled by the —¥/D? term in equation (42).
As a result, Ej(s) deviates from quadratic distribu-
tion and decrease gradually as well. Because of this
extended structure, particles are nearly saturated at
the equilibrium Lorentz factor (dotted line in fig. 7).
In another word, the mono-energetic approximation
adopted in Papers I-IX is justified for this middle-
aged pulsar. Particle distribution function forms a
strong ‘shock’, which is captured only with one grid
point, in 0.4 < s/wrc < 0.45. As a result, jiot fluc-
tuates a little as figure 8 indicates. Nevertheless, it
returns to the 0.2525 level, which is 1 % greater than
the value it should be (0.250), as the characteristics
begin to be less concentrated beyond s = 0.45wy c.

In figure 9, we present the resultant 7y-ray spec-
trum. Because of the nearly saturated motion of the
particles, they lose most of their energy within the
gap. As a result, y-ray luminosity associated with
the escaping particles (5.3 x 103lergs s71), is negli-
gibly small compare to that emitted within the gap
(1.11 x 1033ergs s~!), which is represented by the
dashed line.

It should be noted that a small D | = 0.17w,c =
0.28W gives the best-fit spectrum. This perpendicu-

larly thin gap indicates that the solution presented in
fig. 7, 8, and 9 are, in fact, obtained in the CHR pic-
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Fig. 6.— Computed ~-ray spectra for PSR B1706-
44. The solid, dashed, dash-dotted lines represent
the spectra for ji* = 0.4, 0.2, 0.1, respectively, when
d = 2.5 kpc and o3 = 75°, while the dotted one for
4 = 0.4 when d = 1.0 kpc and a; = 45°.
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Fig. 7.— Spatial distribution of Ej(s) (dashed line)
for the Geminga pulsar when o; = 60°, 7™ = 0.25,
j°Ut = 0, and jigap = 8.0 x 107 5. Particles are satu-
rated at the equilibrium Lorentz factor (dotted line)
for this middle-aged pulsar.
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Fig. 8.— Total current density, jiot, for the same case
as in figure 7. Even though the particle distribution
function forms a strong ‘shock’ in the Lorentz factor
direction in 0.4wrc < s < 0.45wrc (see fig. 7), jo°
is conserved relatively accurately.
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Fig. 9.— Computed v-ray spectrum for the Geminga
pulsar for the same case as in figure 7. The dashed
and solid lines represent the same components as fig-
ure 5.



6 DISCUSSION

ture (D <« W) in the sense that the screening effect
due to the zero-potential walls (i.e., —¥/D3 term in
eq. [42]) is important. There are, of course, differ-
ences from previous works: In the present work, the
set of Maxwell and Boltzmann equations are solved,
while the two-dimensional screening effects are con-
sidered only approximately. To consider the two-
dimensional effect more rigorously, we have to solve
the elliptic-type partial differential equation (4) on
the poloidal plane, together with ordinary differential
equations (53) and hyperbolic-type partial differential
equations (44) and (45) simultaneously.

It follows from figure 9 that we can explain the
observed spectrum between 200 MeV and 6 GeV by
superposing the spectra of y-rays emitted at various
point. It is interesting to compare this result with
what obtained for the Vela pulsar (fig. 5). Between
100 MeV and 1 GeV energies, both spectra are formed
by the superposition of the curvature radiation emit-
ted by the particles having different energies at dif-
ferent positions. The important difference is that the
particles are saturated at the equilibrium Lorentz fac-
tor in the gap for the Geminga pulsar, while they are
nearly mono-energetic but only decelerated via curva-
ture process outside of the gap for the Vela pulsar. Be-
cause the particles are no longer accelerated outside of
the gap, they emit v-rays in lower energies compared
with those still being accelerated in the gap. As a re-
sult, the y-ray spectrum for the Vela pulsar becomes
softer than that for the Geminga pulsar. Extending
this consideration, we can predict that a vy-ray spec-
trum below GeV is soft for a young pulsar and tends
to become hard as the pulsar ages.

5.5. PSR B1055-52

Let us finally apply the present theory to another
middle-aged pulsar, B1055-52. To obtain a large -
ray flux for an appropriately chosen set of j™, jzap,
and D (< s'™), we adopt a large magnetic inclination,
i = 75°.

Since the acceleration field and the particle energy
distributions are similar to the Geminga pulsar, we
present only the computed v-ray spectra for this pul-
sar in figure 10. The solid and dashed lines repre-
sent the spectra for the ji* = 0.25 and 0.125, re-
spectively. For ji» = 0.25, jgap = 2.9 x 1072 and
D, = 0.27wrc = 0.98W are chosen so that the
peak energy of curvature radiation may match the
observed peak energy. In this case, the gap exists
in 0.1485wrc < s < 0.4120wpc. For ji* = 0.125,
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Jeap = 3.7x107% and D | = 0.20wc = 1.7W are cho-
sen and the gap exists in 0.0870wrc < s < 0.201wyc.
It is interesting to note that the spectrum softens for
a smaller D /WW. This is because the zero-potential
wall partially screens E| in equation (42). For the
middle-aged pulsars Geminga and B1055-52, the -
ray luminosity is not simply proportional to D? | be-
cause of this screening effect.

It follows from the figure that the solid line matches
the observed flux with an wunreasonable transfield
thickness, D, = 1.8s™". For the dashed line, we have
to choose D | = 2.3s'™. The observed fluxes cannot be
explained with acceptable gap width (e.g., D < s')
no matter what we may adjust ji, jout, Jgaps and D
if d = 1.53 kpc.

On these grounds, we conjecture that the distance
1.5£0.4 kpc determined from the dispersion measure
(Taylor & Cordes 1993) is too large and that a more
closer distance, such as 500 pc derived from ROSAT
data analysis (Ogelman & Finley 1993) or 700 pc esti-
mated from a study of the extended nonthermal radio
source around the pulsar (Combi, Romero, Azcirate
1997), is plausible. For example, if we set d = 1 kpc,
we can fit the spectrum with a reasonable transverse
thickness, D, = 1.06s™ = 0.15wLc = 0.45W, for
Jjm = 0.25 and jgp = 4.5 x 1072 (dotted line in
fig. 10). For such a transversely thin (D, = 0.45W)
gap, Ej is significantly screened by the zero-potential
wall to become CHR-like distribution, as in the case
for the Geminga pulsar.

In Papers IX and X, we suggested a smaller dis-
tance, d < 0.5 kpc, using ROSAT and ASCA data
(Greiveldinger et al. 1996), which gives an enormously
large blackbody area As = 7.3A4.(d/1.53kpc)?. How-
ever, a more recent BeppoSAX data suggest a rea-
sonable blackbody area of A = 1.3A,; as a result, a
larger distance d < 1 kpc becomes acceptable in the
present, analysis.

6. Discussion

In summary, we have quantitatively examined the
stationary pair-production cascade in an outer mag-
netosphere, by solving the set of Maxwell and Boltz-
mann equations one-dimensionally along the mag-
netic field lines. We revealed that an accelerator (or
a potential gap) is quenched by the created pairs in
the gap but is not quenched by the injected particles
from outside of the gap, and that the gap position
shifts as a function of the injected particle fluxes: If
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the injection rate across the inner (or outer) bound-
ary approaches the typical Goldreich-Julian value, the
gap is located near to the light cylinder (or the star
surface). It should be emphasized that the particle en-
ergy distribution is not represented by a power law, as
assumed in some of previous outer-gap models. The
particles escape from the gap with sufficient Lorentz
factors and emit significant photons in 100 MeV-
3 GeV energies via curvature radiation outside of the
gap. The ~-ray spectrum including this component
explains the phase-averaged EGRET spectra for the
Vela pulsar (and also for PSR B1706-44 with a small
distance, d < 1 kpc). As a pulsar ages, its outer gap
extends in the magnetosphere to approach the CHR
solution: For the two middle-aged pulsars Geminga
and B1055-52, we obtain harder spectra compared
with the two young pulsars. TeV fluxes are unob-
servable with current ground-based telescopes for all
the four pulsars.

We consider the stability of such a gap in the next
subsection. We then point out an implication to the
y-ray luminosity versus the spin-down luminosity in
§ 6.2, and discuss future extensions of the present
method in §§ 6.3-6.5.

6.1. Stability of the Gap

Let us discuss the electrodynamic stability of the
gap, by considering whether an initial perturbation
of the gap width W grows or not. Imagine that
W increases perturbatively. Then the Maxwell equa-
tion (4) increases |E)| = —9¥/0s. To see this behav-
ior more clearly, we can Taylor expand the right-hand
side around the point s = s where p, — pgj vanishes.
Neglecting z dependence, we obtain

2

S = —amA(s — s0) (64)
the constant A is of the order of Qum/(cwt ), where
tm is the magnetic dipole moment of the star (for an
explicit expression of A, see eq. [3] in Paper V). If
W < wrc, so approaches sent, (eq. [37]). Integrating
equation (64), we obtain Ej(s) = 2mA(s®" — s)(s —
s™), where s°% = 5™ + . Thus, the averaged Ej in
the gap can be evaluated as

™

(By) = % / By (s)ds = 3AW2 (65)

Particle Lorentz factor I' also increases with in-
creasing W. For example, if particles are unsaturated,

18

particles energy is roughly proportional to the poten-
tial drop; thus, we obtain

T~ (B)-W o W°. (66)

On the contrary, if they are saturated, the curvature
radiation drag gives

3pe(Ep)\ V4
FN(L;C”)) o W2 (67)

In general, T' depends on W< with 0.5 < a < 3; thus,
T increases with increasing W irrespectively whether
the particles are saturated or not.

As a result of this increased I', the «y-ray energy,
hv,, increases. This is because the central energy
of the curvature radiation increases with increasing I'
(eq. [23]). Moreover, the number of y-rays emitted by
a single particle, N, o« W - T, increases with increas-
ing W (eq. [22] & [28]). The flowchart is depicted in
figure 11.

The increased hv, results in a decrease of Exn by
equation (13). The decreased Eyy, leads to the increase
of n, by equation (12), and hence to the decrease of
Ap by equation (17). This result does not depend on
the origin of the X-ray field. For example, if the X-
rays are thermal origin, A, decreases with decreasing
threshold energy Ein, because the specific intensity
of the X-ray field will be unchanged. If the X-rays
are magnetospheric origin, on the other hand, A, de-
creases more sharply than the thermal case, because
the X-ray density illuminating the gap will increase
with increasing pair-production rate outside of the
gap due to the increased hv, (and N,).

Finally, both the decreased A, and the increased
N, contribute to reduce the initial increase of W
by equation (29). Because of this negative feedback
effect, stationary solutions exist in a wide range of
pulsar parameters (from young to middle-aged pul-
sars). On these grounds, although the perturbation
equations are not solved under appropriate boundary
conditions for the perturbed quantities, we conjecture
that an outer gap is electrodynamically stable, irre-
spective whether the X-ray field illuminating the gap
is thermal or non-thermal origin.

6.2. Gamma-ray vs. Spin-down Luminosities

It should be noted that the emission from the es-
caping particles attain typically 40% of the total ~-
ray luminosity for young pulsars. Thus, it is worth
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mentioning its relationship with the spin-down lumi-

nosity, ]
Lgpin = —IQQ oc Q"1 (68)

where the braking index n is related to the spin-down
rate as )
Q= —kQ". (69)

If the spin down is due to the magnetic dipole radia-
tion, we obtain n = 3.

The outwardly propagating particles escape from
the gap with spatial number density

i Q Beut
Nout — (4in - 70
(" + Jgap) 5 — (70)
where Bt = B(s°"). Therefore, the energy carried

by the escaping particles per unit time is given by
Lese = DiCNOUtFescmeC27 (71)

where Tese(~ 107%) refers to the Lorentz factor of
escaping particles. Note that Tesc is essentially de-
termined by the equilibrium Lorentz factor (dotted
line in fig. 3) near the gap center. Since the equilib-
rium Lorentz factor depends on the one-fourth power
of Ej, the variation of T'esc on pulsar parameters is
small. We can approximate B°"® as

pgout ., Hm_ (WLC)37 (72)

3 out
Wic \T

where 7°U¢ refers to the distance of the outer boundary
of the gap from the star center. Let us assume that
the position of the gap with respect to the light cylin-
der radius, r°"* /@, does not change as the pulsar
evolves; this situation can be realized if ji* — jout is
unchanged. Evaluating B at r = 0.5wc, we obtain

4T D, \?
o - e, (2
(e Lspin0.57 (73)

where n = 3 is assumed in the second line. To de-
rive this conclusion, it is essential that the particles
are not saturated at the equilibrium Lorentz factor.
Thus, the same discussion can be applied irrespective
of the gap position or the detailed physical processes
involved. For example, an analogous conclusion was
derived for a polar-cap model by Harding, Muslimov,
and Zhang (2002). It is, therefore, concluded that
the observed relationship L, o Lgspin®® merely re-
flects the fact that the particles are unsaturated in
the gap and does not discriminate the gap position.
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Let us compare this result with what would be ex-
pected in the CHR picture. Since the gap is extended
significantly along the field lines in the CHR picture,
particles are saturated at the equilibrium Lorentz fac-
tor to lose most of their energies within the gap,
rather than after escaping from it. We can therefore
estimate the y-ray luminosity as

Lgap = (D1 DgW) - N . Poy (74)

where Dy refers to the azimuthal thickness of the gap.
Noting that the particle motion saturates at the equi-
librium Lorentz factor satisfying Pov/c = eEj, re-
calling that the acceleration field is given by Ej ~
QBD? /4pcc in the CHR picture, and evaluating B
at r = wrc, we obtain

L — QI DIDW [ pe o
&ap drcd Wi 0.5w1¢
X Lspin, (75)

where n = 3 is assumed again in the second line. Even
though the escaping particles little contribute to the
~-ray luminosity in the CHR picture, it is worth men-
tioning the work done by Crusius—Wétzel and Lesch
(2002), who accurately pointed out the importance of
the escaping particles in the CHR picture, when we
interpret L, oc L33, relation.

As we have seen, the particles being no longer ac-
celerated contribute for the y-ray luminosity that is
proportional to L% . Reminding that the particles
migrate with larger Lorentz factors than the equilib-
rium value in the outer part of the gap (see fig. 3),
we can expect roughly half of the y-ray luminosity is
proportional to L3, (mainly between 100 MeV and
1 GeV), and the rest of the half to Lspin (mainly above
1 GeV). As a pulsar ages, its declined surface emis-
sion results in a large pair-production mean free path,
and hence W. Because |pg;| o 7~ becomes small in
the outer part of such an extended gap, Ej|(s) deviates
from quadratic distribution to decline gradually in the
outer part (fig. 7). As a result, particles tend to be
saturated at the equilibrium value. On these grounds,
we can predict that the vy-ray luminosity tends to be
proportional to Lspin with age, deviating from L%
dependence for young pulsars.

In the present paper, we have examined the set of
Maxwell and Boltzmann equations one-dimensionally
both in the configuration and the momentum spaces
(i.e., only s and T' dependences are considered.) In
the next three sections, we discuss the extension of
the present method into higher dimensions
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6.3. Returning Particles

If we consider the pitch-angle dependence of par-
ticle distribution functions, we can compute the radia-
tion spectrum with synchro-curvature formula (Cheng
and Zhang 1996). Moreover, we can also consider
the returning motion of particles inside and outside
of the gap. The returning motion becomes particu-
larly important when both signs of charge are injected
across the boundary. For example, not only positrons
but also electrons could be injected across the inner
boundary from the polar-cap accelerator. If E; > 0
for instance, the injected electrons return in the gap.
This returning motion significantly affects the Pois-
son equation, if their injection rate is a good fraction
of the Goldreich-Julian value.

It remains an unsettled issue whether an outer-gap
accelerator resides on the field lines on which a polar-
cap accelerator exists. To begin with, let us consider
the case when the plasma flowing between the po-
lar cap and the outer-gap accelerator is completely
charge separated. Such a situation can be realized,
for instance, if only positively charged particles are
ejected outwardly from the polar cap while there is
virtually no electrons ejected inwardly from the outer
gap. Neglecting the pair production, current conser-
vation law gives the charge density, pe, per unit mag-
netic flux tube as

Pe _ Jtot

B & v’ (76)
where v refers to the particle velocity along the field
line, and jiot the conserved current density per mag-
netic flux tube. At each point along the field line,
pe should match pgy. If the field line intersects the
null surface, po must vanish there; this obviously vi-
olates the causality in special relativity. Therefore, a
stationary ejection of a completely charge-separated
plasma from the polar cap can be realized only along
the field lines between the magnetic axis and those
intersecting the null surface at the light cylinder. On
these grounds, it was argued that an outer-gap ac-
celerator, which is formed close to the last-open field
line, may not resides on the same field lines on which
a polar-cap accelerator resides. This has been, in fact,
the basic idea that an outer gap will not be quenched,
because the particles ejected from the polar cap will
flow along the different field lines. This idea was wel-
comed in outer-gap models, because a gap has been
considered to be quenched if the external particle in-
jection rate becomes comparable to the Goldreich-
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Julian value, which was proved to be incorrect in this
paper.

In general, however, the plasmas are not com-
pletely charge separated and consist of both signs of
charge (e.g., positrons and electrons). Such a situ-
ation can be realized, for instance, if both charges
are ejected outwardly from a polar-cap accelerator, or
if positively charged particles are ejected outwardly
from the polar cap while electrons are ejected in-
wardly from the outer gap, or if there is a pair pro-
duction between the two accelerators. In these cases,
the velocities of both charges will be adjusted so that
both the current conservation and p, = pgy are sat-
isfied at each point along the field lines. Therefore,
it seems likely that a polar-cap accelerator and an
outer-gap accelerator reside on the same field lines.

To examine if there is a stationary plasma flow
between the polar cap and the outer gap, we must
extend the present analysis into two dimensional mo-
mentum space in the sense that the pitch-angle depen-
dence of the particle distribution functions is taken
into account in addition to the Lorentz factor de-
pendence. For example, if both charges are ejected
from the polar-cap accelerator, electrons will return
in the outer gap, screening the original acceleration
field in the gap, and violating the original balance
of pe = pgj outside of the gap. Because the re-
turning motion of particles can be treated correctly
if we consider the pitch-angle evolution of the dis-
tribution functions, and because the pair production
is already taken into account, our present method is
ideally suited to investigate the plasma flows and Ej
distribution self-consistently inside and outside of the

gap.
6.4. Unification of Outer-gap Models

In addition to the extension into a higher dimen-
sional momentum space, it is also important to extend
the present method into a two- or three-dimensional
configuration space. In particular, determination of
the perpendicular thickness, D | , is important to con-
strain gap activities. There have been, in fact, some
attempts to constrain D, in the CHR picture. Since
E is proportional to BD? if D < W, particles en-
ergies, and hence the v-ray energies increase with in-
creasing D, (for a fixed B). Zhang and Cheng (1997)
constrained D | , by considering the condition that the
~y-rays cause photon-photon pair production in the
gap. Subsequently, Cheng, Ruderman, and Zhang
(2000) extended this idea into three-dimensional mag-



6 DISCUSSION

netosphere and discussed phase-resolved ~v-ray spec-
tra for the Crab pulsar. In addition, Romani (1996)
discussed the evolution of the y-ray emission efficiency
and computed the phase-resolved spectra for the Vela
pulsar, by assuming that BD? declines as r~'. How-
ever, in these works, screening effects due to pair pro-
duction has not been considered; thus, the obtained
D, as well as the hypothesized gap position along
the magnetic fields, are still uncertain.

On the other hand, in our approach (picture), D
is not solved but only adjusted so that the v-ray flux
may match the observations. Therefore, the question
we must consider next is to solve such geometrical
and electrodynamical discrepancies between these two
pictures. We can investigate this issue by extending
the present method into higher spatial dimensions.

Furthermore, close to the last-open field line, pe
may fail to match pgy outside of the gap, because
the emitted «-rays soon propagate away from it and
the pair production is expected to be less efficient.
In such a highly charge-starved region in the magne-
tosphere, the electromagnetic field may be approxi-
mated by the Deutsch field (Deutsch 1955). There-
fore, the v-rays emitted close to the last-open field
line may show a very hard spectrum as Higgins and
Henriksen (1997; 1998) predicted. To consider this
issue further, we have to solve the set of Maxwell and
Boltzmann equations on the poloidal plane (s,z) both
inside and outside of the gap, taking account of the
deviation of the «-rays from the field lines on which
they were originally emitted.

6.5. Unification of Outer-gap and Polar-cap
Models

Electrodynamically speaking, the essential differ-
ence between outer-gap and polar-cap accelerators is
the value of the optical depth for pair production.
In an outer-gap accelerator, pair production takes
place via -y collisions and its mean-free path is much
greater than the light cylinder radius. Therefore, a
pair production cascade takes place gradually in the
gap. In such a gap, Ej is automatically screened
out at both the boundaries by the Goldreich-Julian
charge density, which varies monotonically along the
field lines. For example, if E is positive, B¢ in equa-
tion (42) increases outwards: dEj/ds > 0 in the inner
part of the gap, while dEj/ds < 0 in the outer part.
Thus, we do not have to contrive a mechanism to
screen out F| at the boundaries.
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On the contrary, in a polar-cap accelerator, Ej
cannot be screened out by pgy. Nevertheless, in the
vicinity of the star, the strong magnetic field (e.g.,
B ~ 10'2 G) leads to a magnetic pair production, of
which mean free path is much less than the star ra-
dius. As a result, a pair production avalanche takes
place in a limited region, which is called as the ‘pair
formation front’, in the gap (Fawley, Arons, & Sharle-
mann 1977; Harding & Muslimov 1998, 2001, 2002;
Shibata, Miyazaki, Takahara 1998, 2002; Harding,
Muslimov, Zhang 2002). In the pair formation front,
a small portion of the particles return to screen out
Ejj. Such a returning motion can be self-consistently
solved together with FE; by our present method, if
we implement the magnetic pair production and the
resonant IC scattering redistribution functions in the
source terms of the particles’ and y-rays’ Boltzmann
equations. We can execute the same advection-phase
computation in CIP scheme; thus, all we have to do
is to add these source terms in the non-advection-
phase computation, which is not very difficult. Since
analogous boundary conditions (e.g., B = 0 for a
space-charge limited flow) will be applied, we expect
the present method is also applicable to a polar-cap
accelerator. This is an issue to be examined in our
subsequent papers.

The author wishes to express his gratitude to Drs.
A. K. Harding, S. Shibata, and K. S. Cheng for fruit-
ful discussion on theoretical aspects, and to Drs. K.
Shibata and A. Figueroa-Vinas for valuable advice on
numerical analysis.
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Fig. 10.— Computed 7-ray spectrum for B1055—
52. Escaping particles little contribute for the lu-
minosity. For the solid and dashed lines, d =
1.53 kpc is adopted; the corresponding parameter
sets are (j', jgap, D1 /wLc)= (0.25,2.9 x 1072,0.27),
and (0.125,3.7 x 1073,0.20), respectively. For the
dotted line, d = 1 kpc and (j®, jgap, D1 /wrc)=
(0.25,4.5 x 1072,0.16).



6 DISCUSSION

‘ Increase of W as an initial perturbation ‘

‘ Increase of Ej by eq.(65), or by eq.(4) in general ‘

‘ Increase of T by eq.(66) or by eq.(67) ‘
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‘ Increase of hv, by eq.(23) ‘ Increase of N,
I by eq.(28)
‘ Decrease of Eyy, by eq.(13) ‘
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‘ Increase of n;, by eq.(12) ‘
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‘ Decrease of A, by eq.(17) ‘
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‘ Decrease of initially increased W by eq.(29) ‘

Fig. 11.— Stability of an outer-gap accelerator



